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Abstract. Commercial depth sensors usually generate noisy and miss-
ing depths, especially on specular and transparent objects, which
poses critical issues to downstream depth or point cloud-based tasks.
To mitigate this problem, we propose a powerful RGBD fusion net-
work, SwinDRNet, for depth restoration. We further propose Domain
Randomization-Enhanced Depth Simulation (DREDS) approach to sim-
ulate an active stereo depth system using physically based rendering and
generate a large-scale synthetic dataset that contains 130K photoreal-
istic RGB images along with their simulated depths carrying realistic
sensor noises. To evaluate depth restoration methods, we also curate a
real-world dataset, namely STD, that captures 30 cluttered scenes com-
posed of 50 objects with different materials from specular, transparent,
to diffuse. Experiments demonstrate that the proposed DREDS dataset
bridges the sim-to-real domain gap such that, trained on DREDS, our
SwinDRNet can seamlessly generalize to other real depth datasets, e.g.
ClearGrasp, and outperform the competing methods on depth restora-
tion. We further show that our depth restoration effectively boosts the
performance of downstream tasks, including category-level pose estima-
tion and grasping tasks. Our data and code are available at https://
github.com/PKU-EPIC/DREDS.
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1 Introduction

With the emerging depth-sensing technologies, depth sensors and 3D point cloud
data become more and more accessible, rendering many applications in VR/AR
and robotics. Compared with RGB images, depth images or point clouds con-
tain the true 3D information of the underlying scene geometry, thus depth cam-
eras have been widely deployed in many robotic systems, e.g. for object grasp-
ing [3,11] and manipulation [17,18,32], that care about the accurate scene geom-
etry. However, an apparent disadvantage of accessible depth cameras is that they
may carry non-ignorable sensor noises more significant than usual noises in col-
ored images captured by commercial RGB cameras. A more drastic failure case
of depth sensing would be on objects that are either transparent or their sur-
faces are highly specular, where the captured depths would be highly erroneous
and even missing around the specular or transparent region. It should be noted
that specular and transparent objects are indeed ubiquitous in our daily life,
given most of the metallic surfaces are specular and many man-made objects
are made of glasses and plastics which can be transparent. The existence of so
many specular and transparent objects in our real-world scenes thus poses severe
challenges to depth-based vision systems and limits their application scenarios
to well-controlled scenes and objects made of diffuse materials.

Fig. 1. Framework overview. From the left to right: we leverage domain
randomization-enhanced depth simulation to generate paired data, on which we can
train our depth restoration network SwinDRNet, and the restored depths will be fed to
downstream tasks and improve estimating category-level pose and grasping for specular
and transparent objects.

In this work, we devise a two-stream Swin Transformer [15] based RGB-D
fusion network, SwinDRNet, for learning to perform depth restoration. How-
ever, it is a lack of real data composed of paired sensor depths and perfect
depths to train such a network. Previous works on depth completion for trans-
parent objects, like ClearGrasp [26] and LIDF [38], leverage synthetic perfect
depth image for network training. They simply remove the transparent area in
the perfect depth and their methods then learn to complete the missing depths
in a feedforward way or further combines with depth optimization. We argue



376 Q. Dai et al.

that both the methods can only access incomplete depth images during train-
ing and never see a depth with realistic sensor noises, leading to suboptimal-
ity when directly deployed on real sensor depths. Also, these two works only
consider a small number of similar objects with little shape variations and all
being transparent and hence fail to demonstrate their usefulness when adopted
in scenes with completely novel object instances. Given material specularity or
transparency forms a continuous spectrum, it is further questionable whether
their methods can handle objects of intermediate transparency or specularity.

To mitigate the problems in the existing works, we thus propose to syn-
thesize depths with realistic sensor noise patterns by simulating an active stereo
depth camera resembling RealSense D415. Our simulator is built on Blender and
leverages raytracing to mimic the IR stereo patterns and compute the depths
from them. To facilitate generalization, we further adopt domain randomization
techniques that randomize the object textures, object materials (from specular,
transparent, to diffuse), object layout, floor textures, illuminations along cam-
era poses. This domain randomization-enhanced depth simulation method, or in
short DREDS, leads to 130K photorealistic RGB images and their corresponding
simulated depths. We further curate a real-world dataset, STD dataset, that con-
tains 50 objects with specular, transparent, and diffuse material. Our extensive
experiments demonstrate that our SwinDRNet trained on DREDS dataset can
handle depth restoration on object instances from both seen and unseen object
categories in STD dataset and can even seamlessly generalize to ClearGrasp
dataset and beat the previous state-of-the-art method, LIDF [38] trained on
ClearGrasp dataset. Our further experiments on estimating category-level pose
and grasping specular and transparent objects prove that our depth restoration
is both generalizable and successful.

2 Related Work

2.1 Depth Estimation and Restoration

The increasing popularity of RGBD sensors has encouraged much research on
depth estimation and restoration. Many works [7,12,16] directly estimate the
depth from a monocular RGB image, but fail to restore accurate geometries
of the point cloud because of the few geometric constraints of the color image.
Other studies [19,25,33] restore the dense depth map given the RGB image
and the sparse depth from LiDAR, but the estimated depth still suffers from
low quality due to the limited geometric guidance of the sparse input. Recent
research focuses on commercial depth sensors, trying to complete and refine the
depth values from the RGB and noisy dense depth images. Sajjan et al. [26]
proposed a two-stage method for transparent object depth restoration, which
firstly estimates surface normals, occlusion boundaries, and segmentations from
RGB images, and then calculates the refined depths via global optimization.
However, the optimization is time-consuming, and heavily relies on the previous
network predictions. Zhu et al. [38] proposed an implicit transparent object depth
completion model, including the implicit representation learning from ray-voxel
pairs and the self-iterating refinement, but voxelization of the 3D space results
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in heavy geometric discontinuity of the refined point cloud. Our method falls
into this category and outperforms those methods, ensuring fast inference time
and better geometries to improve the performance of downstream tasks.

2.2 Depth Sensor Simulation

To close the sim-to-real gap, the recent research focuses on generating simulated
depth maps with realistic noise distribution. [14] simulated the pattern projection
and capture system of Kinect to obtain simulated IR images and perform stereo
matching, but could not simulate the sensor noise caused by object materials
and scene environments. [22] proposed an end-to-end framework to simulate the
mechanism of various types of depth sensors. However, the rasterization method
limits the photorealistic rendering and physically correct simulation. [21] pre-
sented a new differentiable structure-light depth sensor simulation pipeline, but
cannot simulate the transparent material, limited by the renderer. Recently, [37]
proposed a physics-grounded active stereovision depth sensor simulator for vari-
ous sim-to-real applications, but focused on instance-level objects and the robot
arm workspace. Our DREDS pipeline generates realistic RGBD images for vari-
ous materials and scene environments, which can generalize the proposed model
to category-level unseen object instances and novel categories.

2.3 Domain Randomization

Domain randomization bridges the sim-to-real gap in the way of data augmenta-
tion. Tobin et al. [27] first explore transferring to real environments by generating
training data through domain randomization. Subsequent works [23,28,35] gen-
erate synthetic data with sufficient variation by manually setting randomized
features. Other studies [36] perform randomization using the neural networks.
These works have verified the effectiveness of domain randomization on the tasks
such as robotic manipulation [20], object detection and pose estimation [13], etc..
In this work, we combine the depth sensor simulation pipeline with domain ran-
domization, which, for the first time, enables direct generalization to unseen
diverse real instances on specular and transparent object depth restoration.

3 Domain Randomization-Enhanced Depth Simulation

3.1 Overview

In this work, we propose a simulated RGBD data generation pipeline, namely
Domain Randomization Enhanced Depth Simulation (DREDS), for tasks of
depth restoration, object perception, and robotic grasping. We build a depth sen-
sor simulator, modeling the mechanism of the active stereo vision depth camera
system based on the physically based rendering, along with the domain random-
ization technique to handle real-world variations.

Leveraging domain randomization and active stereo sensor simulation, we
present DREDS, the large-scale simulated RGBD dataset, containing photo-
realistic RGB images and depth maps with the real-world measurement noise
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Table 1. Comparisons of specular and transparent depth restoration dataset.
S, T, and D refer to specular, transparent, and diffuse materials, respectively. #Objects
refers to the number of objects. SN+CG means the objects are selected from ShapeNet
and ClearGrasp (the number are not mentioned).

Dataset Type #Objects Type of material Size

ClearGrasp-Syn [26] Syn 9 T 50K

Omniverse [38] Syn SN+CG T+D 60K

ClearGrasp-Real [26] Real 10 T 286

TODD [34] Real 6 T 1.5K

DREDS Sim 1,861 S+T+D 130K

STD Real 50 S+T+D 27K

and error, especially for the hand-scale objects with specular and transparent
materials. The proposed DREDS dataset bridges the sim-to-real domain gap,
and generalizes the RGBD algorithms to unseen objects. DREDS dataset’s com-
parison to the existing specular and transparent depth restoration datasets is
summarized in Table 1.

3.2 Depth Sensor Simulation

A classical active stereo depth camera system contains an infrared (IR) projector,
left and right IR stereo cameras, and a color camera. To measure the depth, the
projector emits an IR pattern with dense dots to the scene. Subsequently, the
two stereo cameras capture the left and right IR images, respectively. Finally, the
stereo matching algorithm is used to calculate per-pixel depth values based on the
discrepancy between the stereo images, to get the final depth scan. Our depth
sensor simulator follows this mechanism, containing light pattern projection,
capture, and stereo matching. The simulator is mainly built upon Blender [1].

Light Pattern Capture via Physically Based Rendering. For real-world
specular and transparent objects, the IR light from the projector may not be
received by the stereo cameras, due to the reflection on the surface or the refrac-
tion through the transparent objects, resulting in inaccurate and missing depths.
To simulate the physically correct IR pattern emission and capture process, we
thus adopt physically based ray tracing, a technique that mimics the real light
transportation process, and supports various surface materials especially specu-
lar and transparent materials.

Specifically, the textured spotlight projects a binary pattern image into the
virtual scene. Sequentially, the binocular IR images are rendered from the stereo
cameras. We manage to simulate IR images via visible light rendering, where
both the light pattern and the reduced environment illumination contribute to
the IR rendering. From the perspective of physics, the difference between IR and
visible light is the reflectivity and refractive index of the object. We note that
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the wavelength (850 nm) of IR light used in depth sensors, e.g. RealSense D415,
is close to the visible light (400–800 nm). So the resulting effects have already
been well-covered by the randomization in object reflectivity and refractive index
used in DREDS, which constructs a superset of real IR images. To mimic the
portion of IR in environmental light, we reduce its intensity. Finally, all RGB
values are converted to intensity, which is our final IR image.

Stereo Matching. We perform stereo matching to obtain the disparity map,
which can be transferred to the depth map leveraging the intrinsic parameters
of the depth sensor. In detail, we compute a matching cost volume over the left
and right IR images along the epipolar line and find the matching results with
minimum matching cost. Then we perform sub-pixel detection to generate a more
accurate disparity map using the quadratic curve fitting method. To generate
a more realistic depth map, we perform post-processing, including left/right
consistency check, uniqueness constraint, median filtering, etc..

3.3 Simulated Data Generation with Domain Randomization

Based on the proposed depth sensor simulator, we formulate the simulated
RGBD data generation pipeline as D = Sim(S, C), where S = {O,M,L,B}
denotes scene-related simulation parameters in the virtual environment, includ-
ing O the setting of the objects with random categories, poses, arrangements,
and scales, M the setting of random object materials from specular, transpar-
ent, to diffuse, L the setting of environment lighting from varying scenes with
different intensities, B the setting of background floor with diverse materials. C is
the cameras’ statue parameters, consisting of intrinsic and extrinsic parameters,
the pattern image, baseline distance, etc.. Taking these settings as input, the
proposed simulator Sim generates the realistic RGB and depth images D.

To construct scenes with sufficient variations so that the proposed method
can generalize to the real, we adopt domain randomization to enhance the gener-
ation, considering all these aspects. See supplementary materials for more details.

3.4 Simulated Dataset: DREDS

Making use of domain randomization and depth simulation, we construct the
large-scale simulated dataset, DREDS. In total, DREDS dataset consists of two
subsets: 1) DREDS-CatKnown: 100,200 training and 19,380 testing RGBD
images made of 1,801 objects spanning 7 categories from ShapeNetCore [5],
with randomized specular, transparent, and diffuse materials, 2) DREDS-
CatNovel: 11,520 images of 60 category-novel objects, which is transformed
from GraspNet-1Billion [8] that contains CAD models and annotates poses, by
changing their object materials to specular or transparent, to verify the ability of
our method to generalize to new object categories. Examples of paired simulated
RGBD images of DREDS-Catknown and DREDS-CatNovel datasets are shown
in Fig. 2.
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4 STD Dataset

4.1 Real-world Dataset: STD

To further examine the proposed method in real scenes, we curate a real-world
dataset, composed of Specular, Transparent, and Diffuse objects, which we call
it STD dataset. Similar to DREDS dataset, STD dataset contains 1) STD-
CatKnown: the subset with category-level objects, for the evaluation of depth
restoration and category-level pose estimation tasks, and 2) STD-CatNovel:
the subset with category-novel objects for evaluating the generalization ability
of the proposed SwinDRNet method. Figure 3 shows the scene examples and
annotations of STD dataset.

Fig. 2. RGBD examples of
DREDS dataset.

Fig. 3. Scene examples and anno-
tations of STD dataset.

4.2 Data Collection

We collect an object set, covering specular, transparent, and diffuse materials.
Specifically, for STD-CatKnown dataset, we collect 42 instances from 7 known
ShapeNetCore [5] categories, and several category-unseen objects from the YCB
dataset [4] and our own as the distractors. For STD-CatNovel dataset, we pick 8
specular and transparent objects from unseen categories. For each object except
the distractors, we utilize the photogrammetry-based reconstruction tool, Object
Capture API [2], to obtain its clean and accurate 3D mesh for ground truth poses
annotation, so that we can yield ground truth depth and object masks.

We capture data from 30 different scenes (25 for STD-CatKnown, 5 for STD-
CatNovel) with various backgrounds and illuminations, using RealSense D415.
In each scene, over 4 objects with random arrangements are placed in a cluttered
way. The sensor moves around the objects in an arbitrary trajectory. In total,
we take 22,500 RGBD frames for STD-CatKnown, and 4,500 for STD-CatNovel.

Overall, the proposed real-world STD dataset consists of 27K RGBD frames,
30 diverse scenes, and 50 category-level and category-novel objects, making it
facilitate the further generalizable object perception and grasping research.
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5 Method

In this section, we introduce our network for depth restoration in Sect. 5.1 and
then introduce the methods we used for downstream tasks, i.e. category-level
6D object pose estimation and robotic grasping, in Sect. 5.2.

Fig. 4. Overview of our proposed depth restoration network SwinDRNet. We
first extract the multi-scale features of RGB and depth image in phase 1, respectively.
Next, in phase 2, our network fuse features of different modalities. Finally, we generate
the initial depth map and confidence maps via two decoders, respectively, and fuse the
raw depth and initial depth using the predicted confidence map.

5.1 SwinDRNet for Depth Restoration

Overview. To restore the noisy and incomplete depth, we propose a SwinTrans-
former [15] based depth restoration network, namely SwinDRNet.

SwinDRNet takes as input a RGB image Ic ∈ R
H×W×3 along with its

aligned depth image Id ∈ R
H×W and outputs a refined depth Îd ∈ R

H×W that
restores the error area of the depth image and completes the invalid area, where
H and W are the input image sizes.

We notice that prior works, e.g. PVN3D [9], usually leverage a heteroge-
neous architecture that extracts CNN features from RGB and extracts Point-
Net++ [24] features from depth. We, for the first time, devise a homogeneous
and mirrored architecture that only leverages SwinT to extract and hierarchi-
cally fuse the RGB and depth features.

As shown in Fig. 4, the architecture of SwinDRNet is a two-stream fused
encoder-decoder and can be further divided into three phases: in the first phase
of feature extraction, we leverage two separate SwinT backbones to extract hier-
archical features {F i

c} and {F i
d} from the input RGB image Ic and depth Id,

respectively; In the second stage of RGBD feature fusion, we propose a fusion
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module Mf that utilizes cross-attention transformers to combine the features
from the two streams and generate fused hierarchical features {Hi} ; and finally
in the third phase, we propose two decoder modules, the depth decoder module
Ddepth decodes the fused feature into a raw depth and the confidence decoder
module Dconf outputs a confidence map of the predicted raw depth, and from
the outputs we can compute the final restored depth by using the confidence
map to select accurate depth predictions at noisy and invalid areas of the input
depth while keeping the originally correct area as much as possible.

SwinT-Based Feature Extraction. To accurately restore the noisy and
incomplete depth, we need to leverage visual cues from the RGB image that
helps depth completion as well as geometric cues from the depth that may save
efforts at areas with correct input depths. To extract rich features, we propose
to utilize SwinT [15] as our backbone, since it is a very powerful and efficient
network that can produce hierarchical feature representations at different res-
olutions and has linear computational complexity with respect to input image
size. Given our inputs contain two modalities – RGB and depth, we deploy two
seperate SwinT networks, SwinTcolor and SwinTdepth, to extract features from
Ic and Id, respectively. For each one of them, we basically follow the design of
SwinT. Taking the SwinTcolor as an example: we first divide the input RGB
image Ic ∈ R

H×W×3 into non-overlapping patches, which is also called tokens,
Tc ∈ R

H
4 ×W

4 ×48; we then pass Tc through the four stages of SwinT to generate
the multi-scale features {F i

c}, which are especially useful for dense depth predic-
tion thanks to the hierarchical structure. The encoder process can be formulated
as:

{F i
c}i=1,2,3,4 = SwinTcolor(Tc), (1)

{F i
d}i=1,2,3,4 = SwinTdepth(Td). (2)

where F i ∈ R
H
4i×W

4i ×iC and C is the output feature dimension of the linear
embedding layer in the first stage of SwinT.

Cross-Attention Transformer Based RGB-D Feature Fusion. Given the
hierarchical features {F i

c} and {F i
d} from the two-stream SwinT backbone, our

RGB-D fusion module Mf leverages cross-attention transformers to fuse the
corresponding F i

c and F i
d into Hi. For attending feature FA to FB, a common

cross-attention transformer TCA first calculates the query vector QA from FA

and the key KB and value VB vectors from feature FB :

QA = FA · Wq, KB = FB · Wk, VB = FB · Wv, (3)

where W s are the learnable parameters, and then computes the cross-attention
feature HFA→FB

from FA to FB:

HFA→FB
= TCA(FA,FB) = softmax

(
QA · KT

B√
dK

)
· VB , (4)
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where dK is the dimension of Q and K.
In our module Mf , we leverage bidirectional cross-attention by deploying two

cross-attention transformers to obtained the cross-attention features from both
directions, and then concatenates them with the original features to form the
fused hierarchical features {Hi}, as shown below:

Hi = HFi
c→Fi

d

⊕
HFi

d→Fi
c

⊕
F i

c

⊕
F i

d, (5)

where
⊕

represents concatenation along the channel axis.

Final Depth Prediction via Confidence Interpolation. The credible area
of the input depth map (e.g., the edges of specular or transparent objects in con-
tact with background or diffusive objects) plays a critical role in providing infor-
mation about spatial arrangement. Inspired by the previous works [10,30], we
make use of a confidence map between the raw and predicted depth maps. How-
ever, unlike [10,30] predicting the confidence map between the multi-modality,
we focus on preserving the correct original value to generate more realistic depth
maps with less distortion. The final depth map can be formulated as:

Îd = C
⊗

Ĩd + (1 − C)
⊗

Id (6)

where
⊗

represents elementwise multiplication, and Îd and Ĩd denote the final
restored depth and the output of depth decoder head, respectively.

Loss Functions. For SwinDRNet training, we supervise both the final restored
depth Îd and the output of depth decoder head Ĩd, which is formulated as:

L = ωĨd
LĨd

+ ωÎd
LÎd

, (7)

where LÎd
and LĨd

are the losses of Îd and Ĩd, respectively. ωÎd
and ωĨd

are
weighting factors. Each of the two loss can be formulated as:

Li = ωnLn + ωdLd + ωgLg, (8)

where Ln, Ld and Lg are the L1 losses between the predicted and ground truth
surface normal, depth and the gradient map of depth image, respectively. ωn,
ωd and ωg are the weights for different losses. We further add higher weight to
the loss within the foreground region, to push the network to concentrate more
on the objects.

5.2 Downstream Tasks

Category-Level 6D Object Pose Estimation. Inspired by [31], we use the
same backbone with SwinDRNet, and add two decoder heads to predict coordi-
nates of the NOCS map and semantic segmentation mask. Then we follow the
method [31], perform pose fitting between the restored object point clouds in the
world coordinate space and the predicted object point clouds in the normalized
object coordinate space, and perform pose fitting to get the 6D object pose.
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Robotic Grasping. By combining SwinDRNet to the object grasping task, we
can analyze the performance of depth restoration on the robotic manipulation.
We adopt the end-to-end network, GraspNet-baseline [8], to predict the 6-DoF
grasping poses directly from the scene point cloud. Given the restored depth map
from SwinDRNet, the scene point cloud is transformed and sent to GraspNet-
baseline. Then the model predicts the grasp candidates. Finally, the gripper of
the parallel-jaw robot arm executes the target rotation and position selected
from those candidates.

6 Tasks, Benchmarks and Results

In this section, we train our SwinDRNet on the train split of DREDS-CatKnown
dataset and deploy it on the tasks including category-level 6D object pose esti-
mation and robotic grasping.

6.1 Depth Restoration

Evaluation Metrics. We follow the metrics of transparent objects depth com-
pletion in [38]: 1) RMSE: the root mean squared error, 2) REL: the mean
absolute relative difference, 3) MAE: the mean absolute error, 4) the percent-
age of di satisfying max( di

d∗
i
,
d∗
i

di
) < δ, where di denotes the predicted depth, d∗

i

is GT and δ ∈ {1.05, 1.10, 1.25}. We resize the prediction and GT to 126 × 224
resolution for fair comparisons, and evaluate in all objects area and challenging
area (specular and transparent objects), respectively.

Baselines. We compare our method with several state-of-the-art methods,
including LIDF [38], the SOTA method for depth completion of transparent
objects, and NLSPN [19], the SOTA method for depth completion on NYUv2 [29]
dataset. All baselines are trained on the train split of DREDS-CatKnown and
evaluated on four types of testing data: 1) the test split of DREDS-CatKnown:
simulated images of category-known objects. 2) DREDS-CatNovel: simulated
images of category-novel objects. 3) STD-CatKnown: real images of category-
known objects; 4) STD-CatNovel. real images of category-novel objects.

Results. The quantitative results reported in Table 2 show that we achieve the
best performance compared to other methods on DREDS and STD datasets,
and have a powerful generalization ability to transfer to not only novel category
objects in the simulation environment but also in the real world. Moreover, Swin-
DRNet (30 FPS) is significantly faster than LIDF (13 FPS) and the two-branch
baseline that uses PointNet++ on depth (6 FPS). Although it is a little slower
than NLSPN (35 FPS) because the code still has room for further optimization
and acceleration, SwinDRNet is real-time for downstream tasks. The methods
are all evaluated on an NVIDIA RTX 3090 GPU.
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Sim-to-Real and Domain Transfer. We perform sim-to-real and domain
transfer experiments to verify the generalization ability of the DREDS dataset.
For sim-to-real experiments, SwinDRNet is trained on DREDS-CatKnown, but
takes different depth images as input of training (one follow [38] and takes the
cropped synthetic depth image as input, and another takes the simulated depth
image). The results evaluated on STD in Table 3 reveal the powerful potential
of our depth simulation pipeline, which can significantly close the sim-to-real
gap and generalize to the new categories. For domain transfer experiments, we
train SwinDRNet on the train split of DREDS-CatKnown dataset and evaluate
on Cleargrasp dataset. The results reported in Table 4 testify that model only
trained on DREDS-CatKnown can easily generalize to the new domain Claer-
Grasp and outperform the previous results directly trained on ClearGrasp and
Omniverse [38] (LIDF train on Omniverse and ClearGrasp), which verifies the
generalization ability of our dataset.

Table 2. Quantitative comparison to state-of-the-art methods on DREDS
and STD. ↓ means lower is better, ↑ means higher is better. The left of ‘/’ shows
the results evaluated on all objects, and the right of ‘/’ shows the results evaluated
on specular and transparent objects. Note that only one result is reported on STD-
CatNovel, because all the objects are specular or transparent.

Methods RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
DREDS-CatKnown (Sim)

NLSPN 0.010/0.011 0.009/0.011 0.006/0.007 97.48/96.41 99.51/99.12 99.97/99.74

LIDF 0.016/0.015 0.018/0.017 0.011/0.011 93.60/94.45 98.71/98.79 99.92/99.90

Ours 0.010/0.010 0.008/0.009 0.005/0.006 98.04/97.76 99.62/99.57 99.98/99.97

DREDS-CatNovel (Sim)

NLSPN 0.026/0.031 0.039/0.054 0.015/0.021 78.90/69.16 89.02/83.55 97.86/96.84

LIDF 0.082/0.082 0.183/0.184 0.069/0.069 23.70/23.69 42.77/42.88 75.44/75.54

Ours 0.022/0.025 0.034/0.044 0.013/0.017 81.90/75.27 92.18/89.15 98.39/97.81

STD-CatKnown (Real)

NLSPN 0.114/0.047 0.027/0.031 0.015/0.018 94.83/89.47 98.37/97.48 99.38/99.32

LIDF 0.019/0.022 0.019/0.023 0.013/0.015 93.08/90.32 98.39/97.38 99.83/99.62

Ours 0.015/0.018 0.013/0.016 0.008/0.011 96.66/94.97 99.03/98.79 99.92/99.85

STD-CatNovel (Real)

NLSPN 0.087 0.050 0.025 81.95 90.36 96.06

LIDF 0.041 0.060 0.031 53.69 79.80 99.63

Ours 0.025 0.033 0.017 81.55 93.10 99.84
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Table 3. Quantitative results for Sim-to-Real. Synthetic means taking the
cropped synthetic depth images for training, and Simulated means taking the sim-
ulated depth images from the train split of DREDS-CatKnown for training.

Trainset RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
STD-CatKnown (Real)

Synthetic 0.0467/0.056 0.0586/0.070 0.0377/0.047 49.12/39.42 86.50/79.85 98.98/97.66

Simulated 0.015/0.018 0.013/0.016 0.008/0.011 96.66/94.97 99.03/98.79 99.92/99.85

STD-CatNovel (Real)

Synthetic 0.065 0.101 0.053 21.04 55.87 96.96

Simulated 0.025 0.033 0.017 81.55 93.10 99.84

Table 4. Quantitative results for domain transfer. The previous best results
means that the best previous method is trained on ClearGrasp and Omniverse, and
evaluated on ClearGrasp. Domain transfer means that SwinDRNet is trained on
DREDS-CatKnown and evaluated on ClearGrasp.

Model RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp real-known

The previous best results 0.028 0.033 0.020 82.37 92.98 98.63

Domain transfer 0.022 0.017 0.012 91.46 97.47 99.86

ClearGrasp real-novel

The previous best results 0.025 0.036 0.020 79.5 94.01 99.35

Domain transfer 0.016 0.008 0.005 96.73 98.83 99.78

6.2 Category-Level Pose Estimation

Evaluation Metrics. We use two aspects of metrics to evaluate: 1) 3D IoU. It
computes the intersection over union of ground truth and predicted 3D bounding
boxes. We choose the threshold of 25% (IoU25), 50%(IoU50) and 75%(IoU75)
for this metric. 2) Rotation and translation errors. It computes the rotation
and translation errors between the ground truth pose and predicted pose. We
choose 5◦2cm, 5◦5cm, 10◦2cm, 10◦5cm, 10◦10cm for this metric.

Baselines. We choose two models as baselines to show the usefulness of the
restored depth for category-level pose estimation and the effectiveness of Swin-
DRNet+NOCSHead: 1) NOCS [31]. It takes a RGB image as input to predict
the per-pixel normalized coordinate map and obtain the pose with the help of
the depth map. 2) SGPA [6]. The state-of-the-art method. It leverages one
object and its corresponding category prior to dynamically adapting the prior
to the observed object. Then the prior adaptation is used to reconstruct the 3D
canonical model of the specific object for pose fitting.
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Results. To verify the usefulness of the restored depth, we report the results of
three methods using raw or restored (output of SwinDRNet) depth in Table 5.
-only means using raw depth in the whole experiment, Refined depth+ means
using restored depth for pose fitting in NOCS and SwinDRNet+NOCSHead.
Due to the fact that SGPA deforms the point cloud to get the results which
are sensitive to depth, we use restored depth for both training and inference.
We observe that restored depth improves the performance of three methods by
large margins under all the metrics on both dataset. These performance gains
suggest that depth restoration is truly useful for category-level pose estimation.
Moreover, SwinDRNet+NOCSHead outperforms NOCS and SGPA under all the
metrics.

Table 5. Quantitative results for category-level pose estimation. only means
using raw depth in the whole experiment,Refined means using restored depth for train-
ing and inference in SGPA and for pose fitting in NOCS and our method.

Methods IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm

DREDS-CatKnown (Sim)

NOCS-only 85.7 66.0 23.0 21.3 25.4 40.0 47.9 49.0

SGPA-only 79.5 66.7 49.1 29.5 32.5 48.7 54.7 55.7

Refined depth + NOCS 86.7 73.2 40.7 30.4 31.8 54.1 57.5 57.6

Refined depth + SGPA 82.3 72.0 60.5 45.9 46.8 66.4 68.4 68.5

Ours-only 94.3 82.5 57.9 34.5 37.6 55.7 62.6 63.2

Refined depth + Ours 94.7 84.8 68.0 49.1 50.1 69.8 72.4 72.5

STD-CatKnown (Real)

NOCS-only 83.2 66.9 16.9 20.4 26.0 37.9 52.5 53.5

SGPA-only 77.6 67.1 46.6 30.0 32.3 47.7 53.3 53.9

Refined depth + NOCS 82.6 72.6 35.6 28.5 30.0 54.4 57.6 57.7

Refined depth + SGPA 78.8 71.6 62.8 49.3 49.7 70.5 71.5 71.6

Ours-only 92.4 87.4 61.7 37.9 42.6 57.8 70.6 71.0

Refined depth + Ours 92.4 88.0 75.9 52.9 53.8 77.1 79.1 79.1

6.3 Robotic Grasping

Experiments Setting. We conduct real robot experiments to evaluate the
depth restoration performance on robotic grasping tasks. In our physical setup,
we use a 7-DoF Panda robot arm from Franka Emika with a parallel-jaw gripper.
RealSense D415 depth sensor is mounted on the tripod in front of the arm. We
set 6 rounds of table clearing experiments. For each round, 4 to 5 specular
and transparent objects are randomly picked from STD objects to construct a
cluttered scene. For each trial, the robot arm executes the grasping pose with
the highest score, and removes the grasped object until the workspace is cleared,
or 10 attempts are reached.
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Evaluation Metrics. Real grasping performance is measured using the follow-
ing metrics: 1) Success Rate: the ratio of grasped object number and attempt
number, 2) Completion Rate: the ratio of successfully removed object number
and the original object number in a scene.

Baselines. We follow the 6-DoF grasping pose prediction network GraspNet-
baseline, using the released pretrained model. GraspNet means GraspNet-
baseline directly takes the captured raw depth as input, while SwinDR-
Net+GraspNet means the network receives the refined point cloud from Swin-
DRNet that is trained only on DREDS-CatKnown dataset.

Table 6. Results of real robot experiments. #Objects denotes the sum of grasped
object numbers in all rounds. #Attempts denotes the sum of robotic grasping attempt
numbers in all rounds.

Methods #Objects #Attempts Success rate Completion rate

GraspNet 19 49 38.78% 40%

SwinDRNet+GraspNet 25 26 96.15% 100%

Results. Table 6 reports the performance of real robot experiments. SwinDR-
Net+GraspNet obtains high success rate and completion rate, while GraspNet
is lower. Without depth restoration, it is difficult for a robot arm to grasp spec-
ular and transparent objects due to the severely incomplete and inaccurate raw
depth. The proposed SwinDRNet significantly improves the performance of spec-
ular and transparent object grasping.

7 Conclusions

In this work, we propose a powerful RGBD fusion network, SwinDRNet, for
depth restoration. Our proposed framework, DREDS, synthesizes a large-scale
RGBD dataset with realistic sensor noises, so as to close the sim-to-real gap for
specular and transparent objects. Furthermore, we collect a real dataset STD, for
real-world performance evaluation. Evaluations on depth restoration, category-
level pose estimation, and object grasping tasks demonstrate the effectiveness of
our method.
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